

Page 1 of 7

ICT167 Principles of Computer Science

Semester 2, 2020

Assignment 1 (worth 20% of unit assessment)

Due Date: Midnight, Friday (Teaching Week 7) 11 September 2020

All Students: Submit the Assignment via LMS by the due date.
Late penalty: 10% per day penalty for delayed submissions unless prior extension of deadline is
obtained from the unit coordinator.
You should keep a copy of your work. Your submission must include a completed assignment cover
sheet. An electronic copy of the assignment cover sheet is available at the unit LMS site.

This assignment consists of one question. All parts of the question should be attempted.

You may be asked by your tutor to explain your submission. Make sure you understand everything
you are submitting.

Read and understand the information at: http://our.murdoch.edu.au/Educational-
technologies/What-you-need-to-know/ - pay extra attention on Academic Misconduct section

References and Pre-requisites:

• You will need to familiar yourself with materials covered in Topics 1 to 6.
• Lab Practices 1 to 5 have been attempted, even if not submitted.
• Textbook Chapters 1 to 7

If you are unsure of anything about the assignment question, you need to get clarification early.
Read this document very carefully and start to discuss with your lecturer.

OBJECTIVES:
• Construct algorithms to solve problems using a combination of sequence, selection and iteration

constructs.
• Apply the Object-Oriented design paradigm to construct solutions in a modular way.
• Implement such a design using the JAVA programming language.
• Demonstrate the basic understanding of the array data structure.
• Searching in the array of class objects.

Worth:
This assignment is worth 20% of the total assessment for the unit.

This is an individual assignment and must be completed by you alone.
Any unauthorised collaboration/collusion may be subject to investigation

and result in penalties if found to be in breach of University policy.

Page 2 of 7

Question

This question reinforces concepts from Lab Practices 1 - 5. Best practice of Class and Method design
should be demonstrated. This will require a good understanding of class design concepts and
method design concepts: code re-use, high cohesion and low coupling.

Before attempting this question, complete the pre-requisites listed on the first page of this document.

Assignment 1 uses O-O design implemented in Java. You will need to use a user-defined class, as
an array of such class objects will be required.

User-defined Class:

You will design and implement your own data class. The class will store data that has been read as
user input from the keyboard (see Getting Input below), and provide necessary operations. As the
data stored relates to monetary change, the class should be named Change. The class requires at
least 2 instance variables for the name of a person and the coin change amount to be given to that
person. You may also wish to use 4 instance variables to represent amounts for each of the 4 coin
denominations (see Client Class below). There should be no need for more than these instance
variables. However, if you wish to use more instance variables, you must provide legitimate
justification for their usage in the internal and external documentation.

Your class will need to have at least a default constructor, and a constructor with two parameters:
one parameter being a name and the other a coin amount. Your class should also provide appropriate
get and set methods for client usage. Other methods may be provided as needed. However, make
sure they are necessary for good class design; you must provide legitimate justification for their
usage in the internal and external documentation. In particular, your class should NOT include Input
and Output methods. The only way to get data out of a data class object to the client program is to
use an appropriate get method. The data class methods must not write data out. Data should be
entered into a data class object via a constructor or an appropriate set method.

When designing your Change class, use an UML class diagram to help understand what the class
design needs.

Getting Input:

Input for the client program will come from keyboard (entered by the user). The input should consist
of: the name of a person, and a coin value (as an integer). The program should validate the input
coin value to ensure that it is in the range 5 to 95, and is evenly divisible by 5. Names are one-word
strings. You should ask the user to enter the required information using a loop with a question after
each loop iteration to check if the user wants to end the input of data. It is recommended for the user
to input at least 12 such data – this can be conveyed to the user using a message before entering the
loop.

NOTE: for the purpose of testing the program by your tutor, you should provide a method in the
client class that hardcodes data into at least 12 Change objects and stores these objects into the array
provided by your program. In this case, your tutor would not need to manually key in the data to
test the program when assessing your work. Thus, you should provide a call to this method
(commented out) in the main function; this can be uncommented by your tutor as needed.

Page 3 of 7

Example of inputs as follows:

Recommendation: Please enter at least 12 records to test the program.

Please enter the name of the person:
Jane
Please enter the coin value for the person (range 5 to 95, multiple of 5):
30

Do you have more person to enter (Y/N):
Y

Please enter the name of the person:
John
Please enter the coin value for the person (range 5 to 95, multiple of 5):
50

Do you have more person to enter (Y/N):
Y

Please enter the name of the person:
Fred
Please enter the coin value for the person (range 5 to 95, multiple of 5):
94

Incorrect coin value. Must be in the range 5 to 95, and multiple of 5.

Please enter the name of the person:
Wilma
Please enter the coin value for the person (range 5 to 95, multiple of 5):
100

Incorrect coin value. Must be in the range 5 to 95, and multiple of 5.

Please enter the name of the person:
Jane
Please enter the coin value for the person (range 5 to 95, multiple of 5):
35

Do you have more person to enter (Y/N):
Y

… (assuming this is repeated at least 12 times)

Do you have more person to enter (Y/N):
N

… (go out of the loop)

Page 4 of 7

Client Class:

The client program should read the input data from the user (or the method with hardcoded inputs)
and use the Change class to store the data entered. This data should be stored in a Change class
object. You will need a data structure to store the Change class objects according to the number of
persons entered. Thus, you are to utilize an array of Change objects.

It should be noted that it is possible to have the same name entered numerous times, but the coin
values for such repetitions could be different. When the name is the same, it would mean the same
individual, and your program should add up the coin amounts to obtain a total amount for that
individual; this should be performed before computing the change to be given. Note that in this
scenario, the total amount for an individual may end up being over 100, 200, 300, or more cents.

Make sure you have hardcoded test cases of the above for your tutor to test for these situations.

Processing would involve determining repeated names and accumulating the total for those repeated
names. You must ensure that there are no objects with repeated names in the array. Then
methods would need to be called to calculate the required output corresponding to the coin amounts
stored in the array of objects. Output change values must consist of the following denominations:
50, 20, 10 and 5 cents. The program should aim to give as much of the higher valued coins as
possible. A poor solution for an input of 30 cents is to give six 5 cent coins. The better solution is to
give a 20 cent coin and a 10 cent coin.

Once the data input has been completed, your program should then display a menu screen as
illustrated below. The program will continue to show the menu and execute the menu options until
"Exit" is selected by entering the value 5 at the menu prompt.

1. Enter a name and display change to be given for each denomination
2. Find the name with the smallest amount and display change to be

given for each denomination
3. Find the name with the largest amount and display change to be

given for each denomination
4. Calculate and display the total number of coins for each

denomination, and the sum of these totals
5. Exit

When the user enters the value 1 at the menu prompt, your program will ask for a name. As an
example, if the user enters the name Jane (as in the example input above), the program will output:

Customer:
Jane 65 cents

Change:
50 cents: 1
10 cents: 1
5 cents: 1

N.B. change values of 0 are not shown for screen output.

If the user enters a non-existent name (eg: Donald) at menu option 1, which would therefore not be
in the array of objects, your program will print:

Page 5 of 7

Name: Donald
Not found

After processing the output for menu option 1, the menu is re-displayed.

When the user enters 2 at the menu prompt, your program will search all objects in the array to find
the object with the smallest coin amount. Then the program will output the name for the person, and
the denomination breakdown of their change. After processing the output for menu option 2, the
menu is re-displayed.

When the user enters 3 at the menu prompt, your program will search all objects in the array to find
the object with the largest coin amount. Then the program will output the name for the person, and
the denomination breakdown of their change. After processing the output for menu option 3, the
menu is re-displayed.

When the user enters 4 at the menu prompt, your program will access all objects in the array to
calculate and display the total number of coins for each denomination, and the sum of these totals.
After processing the output for menu option 4, the menu is re-displayed.

When the user enters 5 at the menu prompt, your program will write an appropriate farewell message
to screen and exit.

The client program requires the submission of a structure chart, a high-level algorithm and low-level
algorithm (i.e. suitable de-compositions of each step in the high-level algorithm).

Important Points:

You need to provide a test plan to fully test your algorithm and program. As well as keyboard input,
do not forget to provide a method in the client class that hardcodes data into at least 12 Change
objects and stores these objects into the array provided by your program. Think carefully about how
to construct this test data. If done well, you should be able to do nearly all required testing with this
set of test data.

Your solution (user-defined class, client class program and algorithm) should be modular in design.
For methods, use a high cohesion and low coupling design approach. These principles will also
demonstrate good code re-use if done properly.

Note that for this problem, the principle of code re-use is particularly important and a significant
number of marks are allocated to this. You should attempt to design your solution such that it
consists of a relatively small number of methods that are as general in design as possible, and you
should have methods that can be re-used (called repeatedly) in order to solve the majority of the
problem (actual calculations). If you find that you have developed a large number of methods where
each performs a similar task, OR there is a lot of code that is repeated in the methods, then attempt
to analyse your design to generalise the logic so that you have just one general version of required
methods.

Be mindful of the cohesion exhibited by a method. If you have a method that is doing more than one
task, then cohesion is low, and you will need to re-design it to have high cohesion.

Page 6 of 7

Distribution of marks for assessment

For the programming question, an approximate distribution of marks for assessment is given below.
The question will be marked out of 100 as follows:

• Correct solution design (class and method) and implementation: 50 marks
• Programming style (internal documentation (comments), use of methods, parameters,

readability, presentation of output etc.): 25 marks
• External Documentation (problem specification, algorithm, program limitations, program

listings, program test strategy, and test results, etc.): 25 marks

For internal documentation (i.e. in the source code) we require:

• A beginning comment clearly stating title, author, date, file name, purpose and any
assumptions or conditions on the form of input and expected output;

• Other comments giving useful low-level documentation and describing each component (eg:
method pre- and post-conditions);

• Well-formatted readable code with meaningful identifier names and blank lines between
components (like methods and classes).

The program should also include a method (eg: StudentInfo()) to output your student details (name,
student number, mode of enrolment, tutor name, tutorial attendance day and time) to the screen
before the input data is read in.

Required External Documentation for each question:

1. Title: a paragraph clearly stating title, author, date, file names, and one-line statement of
purpose.

2. Requirements/Specification: a paragraph giving a brief account of what the program is
supposed to do. State any assumptions or conditions on the form of input and expected
output.

3. User Guide: include clear instructions on how to compile and run the program, and how to
use the program during execution.

4. Structure/Design/Algorithm: Outline the design of your program (it is here that you will need
to justify any extra instance variables and class methods that you have included in Change
class). Give a written description, use diagrams (UML class diagram and structure chart),
and use pseudocode for algorithm.

5. Limitations: Describe program shortfalls (if any) e.g.: the features asked for but not
implemented the situations it cannot handle, etc.

6. Testing: describe your testing strategy (the more systematic, the better) and any errors
noticed. Provide a copy of your results of testing in a document saved in Word format. Note
that a copy of the sample test data and results from a program run for each program is
required (copy from the program output window and paste to a Word file). Your submitted
test results should demonstrate a thorough testing of the program.

7. Source program listings: save all your Java source code in a document in MS Word format.

Page 7 of 7

All of the external documentation for the question must be included in the above order saved in a
file in MS Word format. Your final external documentation submission should be prepared as a
single Word document containing each of the questions in order and each section within these also
in order.

It is also necessary to submit the Java source code and compiled version of your program (i.e. all
classes that you have designed and implemented). You should develop the program using the
NetBeans IDE. It will make it easy to collect sample output. The whole NetBeans project should be
submitted.

The external documentation together with the source code files and compiled versions for the
question must be compressed in a .zip file before submitting. Note that the whole NetBeans project
folders is zipped. Make sure that all necessary files are submitted so that the programs can be viewed,
compiled and run successfully.

The final versions of the programs should compile and run under Java SE (JDK). Internal students
should test compilation and running on the University lab machines.

Kevin Wong
ICT167 Unit Coordinator

